Foundational Issues: Still Meaningful

UniLog'2018 Logic for Dynamic Real World Information

Vichy, France

David McGoveran

Monday June 25, 2018 8:45-930 AM

Alternative Technologies

POB 4699 Deerfield Beach, FL 33442 Vmail: (831) 338-4621 Email: mcgoveran@AlternativeTech.com Web: www.AlternativeTech.com

Nature of This Talk

ESSENTIALLY INFORMAL

- Formal issues will be raised, but ignoring lots of detail
- SURVEY
 - Logic and Semantics of Software Systems
 - Design and Implementation Issues
 - Unanticipated "Failures"
 - Examples from Experience

Software Engineering: Radical View?

- Identify subject system (physical world?)
- Analyze elements: entities, properties, relationships, transformations, and processes
- Select a sufficiently expressive formal (logical, deductive) system
- Choose symbolic vocabulary logical (formal operations) vs. nonlogical (arguments)
- Map elements to symbols
 - transforms and processes \rightarrow deductions or algorithms using formal operations
 - entities, properties, relationships \rightarrow nonlogical symbols or data structures

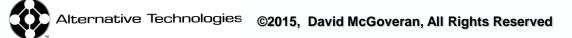
Decision Procedures

- Program Logic if then else, while, etc.
 - partitions the representational space into disjoint regions
- Querying databases
 - DBMS based on formal deductive system such as relational
- Informational Systems
 - e.g., reporting, analytical, decision support
- Advisory Systems
 - e.g., recommenders, business intelligence systems
- Semi-automated Systems
 - e.g., automobile cruise control and braking
- Fully automated Systems
 - e.g., factory robots, trading systems, autopilots (air and car)

Decision Procedures

- Intelligent/Adaptive (AI/ML)
 - classifiers, recognizers, planners, etc.
 - dominant methods: neural networks vs. statistical learning
- Semantic Representation Issues Matter
 - feature selection
 - dimensionality
 - convergence
 - number of independent random variables
 - probability distributions (discrete? quantum?)
 - continuity

Semantics: Interpretations


- Subject/Intrinsic Interpretation usually informal
 - finite vs. infinite (round trip floating point rounding errors?)
 - continuous vs. discrete
 - bounded vs. unbounded
- Canonical Interpretation formal/internal
 - The interpretation the logical system is meant to represent
 - An interpretation is "permissible" if consistent with canonical
- Expected Interpretation
 - What the architect/designer/developers expect (usually implicit!)
 - must be permissible
- Realized Interpretation
 - how the system is actually understood and used

Semantics: Representations

- Subject System vs. Formal System
- Mapping Correspondence between symbol (formal system) and meaning (subject system)
 - Extensional set of elements we "point" to
 - Intensional a specification of the above set, applied to a "welldefined" universe
- Deductive System Implementation Logic
 - FOL (untyped vs. typed)
 - Computationally/Turing Complete
- "Simulated" Logic
 - languages: natural, SQL, etc.
 - Propositional, FOL, SOL, Fuzzy, nVL, Modal, Probabilistic, etc.

Foundations: How Well Defined? (Relational Data Model Example)

- Finite, Countably Infinite, or Uncountably Infinite [finite]
- Untyped or Typed [typed]
- Truth Values
 - How many and which are designated/anti-designated [bivalent]
- Truth Functional
 - compound wffs evaluated by evaluating components [evaluation is mechanical and based on data in database]
- Theory of Truth
 - e.g., correspondence (meaning assignments) vs. coherence (truth value assignments)[both!]

Foundations: How Well Defined?

Tautologies

- wffs true for all permissible interpretations (e.g., P ∨ ¬P)
 [tautological query returns every accessed proposition]
- Sound
 - every provable (i.e., deducible) wff S is true for all permissible interpretations [every query represents a set of true and only true propositions]
- Negation Consistent
 - for every wff S, either S or else ¬S is a theorem [a syntactically correct query and its negation have disjoint results]
- Expressively Complete
 - can express all of the intended subject [users can query every possible proposition about the subject]

Foundations: How Well Defined?

Deductively Complete

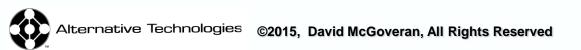
- every true wff S is provable [every fact represented in the database can be accessed via a query]
- Decidable
 - general algorithm to evaluate truth value of any wff [users never write/verify a database/application specific evaluation algorithm]
 - [Finite FOL and Wittgenstein quantifier reduction FOL deduction, propositional evaluation]
- Familiarity: Principle of Least Surprise
 - **Example**: The Many-valued Logic (nVL) of SQL
 - » Can you say "complexity"?
 - » K3 fragment? (versus extension versus deviant)
 - » Inconsistent semantics: DBMS product dependent!

Interpretation by Users

- What meanings will users give symbols?
 - This is the realized interpretation
 - Even mnemonic text on a display does not preclude semantic misalignment
- Are both the expected and realized interpretations permissible?
 - Semantic consistency with the formal logical system
- Are the realized interpretation and the expected interpretation at least compatible?
 - How do we know?

Interacting Semantic Systems

- Implication: Representation of one = Interpretation of other
 - Requires mutual semantic consistency among all systems
 - Problems similar to human communication problems
 - THE problem of system integration: assumes global control
 - Examples: airline systems, digital cable systems
- Realms of Complex System Behavior
- Stability under some inputs
- Unpredictable/Potentially Chaotic Behavior
 - Increases with diversity & semantically inconsistency of interacting systems
 - Examples: Wall Street 10/19/1987, Drone GPS spoofing 12/4/2011


Unexpected Semantic Systems

- Users as "systems"
 - Users can be understood as "systems" in their own right
 - BUT: They (may) have unstable semantics and system(s) of inference!
- Unintended Operational Environments
 - Input sources matter, especially when sensor-based !
- Unanticipated Combinations
 - **Example**: Consider this complex, interacting combination
 - Self-driving cars from multiple manufacturers
 - » Different policies about reacting to obstacles like people
 - Adaptive traffic management systems in cities
 - Adaptive routing systems (Google maps, Trip, etc.)

So What Can We Do?

- Identify Logic Systems and Their Characteristics
- Identify Assumptions
 - Semantics
 - Axioms
 - Intended Operational Environment
- Anticipate Failure Modes
- Make these available for users and other decision system designers/developers
- Initiate Research Into Interacting Semantic Systems
- Establish an "Underwriter's Laboratory"
 - Determine how to "label" systems with appropriate characteristics

Questions? Slides by Email Request

